Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
Front Pharmacol ; 15: 1340691, 2024.
Article En | MEDLINE | ID: mdl-38606173

Introduction: Phenobarbital (PB) and levetiracetam (LEV) are the first-line therapies for neonates with diagnosed seizures, however, a growing body of evidence shows that these drugs given during critical developmental windows trigger lasting molecular changes in the brain. While the targets and mechanism of action of these drugs are well understood-what is not known is how these drugs alter the transcriptomic landscape, and therefore molecular profile/gene expression during these critical windows of neurodevelopment. PB is associated with a range of neurotoxic effects in developing animals, from cell death to altered synaptic development to lasting behavioral impairment. LEV does not produce these effects. Methods: Here we evaluated the effects of PB and Lev on the hippocampal transcriptome by RNA sequencing. Neonatal rat pups were given a single dose of PB, Lev or vehicle and sacrificed 72 h later-at time at which drug is expected to be cleared. Results: We found PB induces broad changes in the transcriptomic profile (124 differentially expressed transcripts), as compared to relatively small changes in LEV-treated animals (15 transcripts). PB exposure decreased GABAergic and oligodendrocyte markers pvalb and opalin, and increased the marker of activated microglia, cd68 and the astrocyte- associated gene vegfa. These data are consistent with the existing literature showing developmental neurotoxicity associated with PB, but not LEV. Discussion: The widespread change in gene expression after PB, which affected transcripts reflective of multiple cell types, may provide a link between acute drug administration and lasting drug toxicity.

2.
eNeuro ; 11(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38575350

The nucleus accumbens (NAc) is a central component of the brain circuitry that mediates motivated behavior, including reward processing. Since the rewarding properties of social stimuli have a vital role in guiding behavior (both in humans and nonhuman animals), the NAc is likely to contribute to the brain circuitry controlling social behavior. In rodents, prior studies have found that focal pharmacological inhibition of NAc and/or elevation of dopamine in NAc increases social interactions. However, the role of the NAc in social behavior in nonhuman primates remains unknown. We measured the social behavior of eight dyads of male macaques following (1) pharmacological inhibition of the NAc using the GABAA agonist muscimol and (2) focal application of quinpirole, an agonist at the D2 family of dopamine receptors. Transient inhibition of the NAc with muscimol increased social behavior when drug was infused in submissive, but not dominant partners of the dyad. Focal application of quinpirole was without effect on social behavior when infused into the NAc of either dominant or submissive subjects. Our data demonstrate that the NAc contributes to social interactions in nonhuman primates.

3.
Hippocampus ; 34(5): 261-275, 2024 May.
Article En | MEDLINE | ID: mdl-38516827

Decades of studies robustly support a critical role for the hippocampus in spatial memory across a wide range of species. Hippocampal damage produces clear and consistent deficits in allocentric spatial memory that requires navigating through space in rodents, non-human primates, and humans. By contrast, damage to the hippocampus spares performance in most non-navigational spatial memory tasks-which can typically be resolved using egocentric cues. We previously found that transient inactivation of the hippocampus impairs performance in the Hamilton Search Task (HST), a self-ordered non-navigational spatial search task. A key question, however, still needs to be addressed. Acute, reversible inactivation of the hippocampus may have resulted in an impairment in the HST because this approach does not allow for neuroplastic compensation, may prevent the development of an alternative learning strategy, and/or may produce network-based effects that disrupt performance. We compared learning and performance on the HST in male rhesus macaques (six unoperated control animals and six animals that underwent excitotoxic lesions of the hippocampus). We found a significant impairment in animals with hippocampal lesions. While control animals improved in performance over the course of 45 days of training, performance in animals with hippocampal lesions remained at chance levels. The HST thus represents a sensitive assay for probing the integrity of the hippocampus in non-human primates. These data provide evidence demonstrating that the hippocampus is critical for this type of non-navigational spatial memory, and help to reconcile the many null findings previously reported.


Hippocampus , Macaca mulatta , Spatial Memory , Animals , Hippocampus/physiology , Male , Spatial Memory/physiology , Memory Disorders/physiopathology , Memory Disorders/pathology
4.
Epilepsy Res ; 201: 107318, 2024 Mar.
Article En | MEDLINE | ID: mdl-38430668

BACKGROUND: Many anti-seizure medications (ASMs) trigger neuronal cell death when administered during a confined period of early life in rodents. Prototypical ASMs used to treat early-life seizures such as phenobarbital induce this effect, whereas levetiracetam does not. However, most prior studies have examined the effect of ASMs in naïve animals, and the degree to which underlying brain injury interacts with these drugs to modify cell death is poorly studied. Moreover, the degree to which drug-induced neuronal cell death differs as a function of sex is unknown. METHODS: We treated postnatal day 7 Sprague Dawley rat pups with vehicle, phenobarbital (75 mg/kg) or levetiracetam (200 mg/kg). Separate groups of pups were pre-exposed to either normoxia or graded global hypoxia. Separate groups of males and females were used. Twenty-four hours after drug treatment, brains were collected and processed for markers of cell death. RESULTS: Consistent with prior studies, phenobarbital, but not levetiracetam, increased cell death in cortical regions, basal ganglia, hippocampus, septum, and lateral thalamus. Hypoxia did not modify basal levels of cell death. Females - collapsed across treatment and hypoxia status, displayed a small but significant increase in cell death as compared to males in the cingulate cortex, somatosensory cortex, and the CA1 and CA3 hippocampus; these effects were not modulated by hypoxia or drug treatment. CONCLUSION: We found that a history of graded global hypoxia does not alter the neurotoxic profile of phenobarbital. Levetiracetam, which does not induce cell death in normal developing animals, maintained a benign profile on the background of neonatal hypoxia. We found a sex-based difference, as female animals showed elevated levels of cell death across all treatment conditions. Together, these data address several long-standing gaps in our understanding of the neurotoxic profile of antiseizure medications during early postnatal development.


Anticonvulsants , Phenobarbital , Male , Animals , Rats , Female , Anticonvulsants/pharmacology , Animals, Newborn , Levetiracetam/pharmacology , Rats, Sprague-Dawley , Phenobarbital/pharmacology , Cell Death , Hypoxia/drug therapy
5.
Aging Cell ; 23(4): e14087, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332648

Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at ß-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.


Amphetamine , Central Nervous System Stimulants , Rats , Animals , Amphetamine/pharmacology , Norepinephrine/pharmacology , Rats, Sprague-Dawley , Dendritic Spines/metabolism , Central Nervous System Stimulants/pharmacology , Cerebral Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Rats, Inbred F344 , Glutamic Acid , Cognition
6.
Behav Brain Res ; 458: 114741, 2024 02 26.
Article En | MEDLINE | ID: mdl-37931704

Extinction of conditioned fear is considered a fundamental process in the recovery from posttraumatic stress disorder and anxiety disorders. Sleep, especially rapid-eye-movement (REM) sleep, has been implicated in promoting extinction memory. The orexin system contributes to the regulation of sleep and wakefulness and emotional behaviors. In rodents, administrations of an orexin receptor antagonist following fear extinction training enhanced consolidation of extinction memory. Although orexin antagonists increase sleep, including REM sleep, the possible contribution of sleep to the effects of orexin antagonists on extinction memory has not been examined. Therefore, this study examined the effects of suvorexant, a dual orexin receptor antagonist, on extinction memory and sleep and their associations in mice. C57BL/6 mice underwent sleep recording for 24 h before and after contextual fear conditioning with footshocks and extinction learning during the early light phase or early dark phase. Mice were systemically injected with either 25 mg/kg of suvorexant or vehicle immediately after the extinction session. We found that suvorexant neither altered sleep nor improved extinction memory recall compared with vehicle. The higher percentages of REM sleep during the post-extinction dark phase were associated with lower extinction memory recall and greater freezing responses to the fear context. Results also indicate that animals did not reach complete extinction of fear with the fear extinction training protocol used in this study. These findings suggest that promoting REM sleep may not enhance fear extinction memory when extinction of fear is incomplete.


Implosive Therapy , Orexin Receptor Antagonists , Mice , Animals , Orexin Receptor Antagonists/pharmacology , Orexins , Extinction, Psychological/physiology , Fear/physiology , Mice, Inbred C57BL , Sleep/physiology
7.
Front Neurol ; 14: 1295934, 2023.
Article En | MEDLINE | ID: mdl-38073649

Introduction: Neonatal hypoxia is a common cause of early-life seizures. Both hypoxia-induced seizures (HS), and the drugs used to treat them (e.g., phenobarbital, PB), have been reported to have long-lasting impacts on brain development. For example, in neonatal rodents, HS reduces hippocampal long-term potentiation (LTP), while PB exposure disrupts GABAergic synaptic maturation in the hippocampus. Prior studies have examined the impact of HS and drug treatment separately, but in the clinic, PB is unlikely to be given to neonates without seizures, and neonates with seizures are very likely to receive PB. To address this gap, we assessed the combined and separate impacts of neonatal HS and PB treatment on the development of hippocampal LTP. Methods: Male and female postnatal day (P)7 rat pups were subjected to graded global hypoxia (or normoxia as a control) and treated with either PB (or vehicle as a control). On P13-14 (P13+) or P29-37 (P29+), we recorded LTP of the Schaffer collaterals into CA1 pyramidal layer in acute hippocampal slices. We compared responses to theta burst stimulation (TBS) and tetanization induction protocols. Results: Under the TBS induction protocol, female rats showed an LTP impairment caused by HS, which appeared only at P29+. This impairment was delayed compared to male rats. While LTP in HS males was impaired at P13+, it normalized by P29+. Under the tetanization protocol, hypoxia produced larger LTP in males compared to female rats. PB injection, under TBS, did not exacerbate the effects of hypoxia. However, with the tetanization protocol, PB - on the background of HS - compensated for these effects, returning LTP to control levels. Discussion: These results point to different susceptibility to hypoxia as a function of sex and age, and a non-detrimental effect of PB when administered after hypoxic seizures.

8.
Brain ; 146(10): 4320-4335, 2023 10 03.
Article En | MEDLINE | ID: mdl-37192344

While anti-seizure medications are effective for many patients, nearly one-third of individuals have seizures that are refractory to pharmacotherapy. Prior studies using evoked preclinical seizure models have shown that pharmacological activation or excitatory optogenetic stimulation of the deep and intermediate layers of the superior colliculus (DLSC) display multi-potent anti-seizure effects. Here we monitored and modulated DLSC activity to suppress spontaneous seizures in the WAG/Rij genetic model of absence epilepsy. Female and male WAG/Rij adult rats were employed as study subjects. For electrophysiology studies, we recorded single unit activity from microwire arrays placed within the DLSC. For optogenetic experiments, animals were injected with virus coding for channelrhodopsin-2 or a control vector, and we compared the efficacy of continuous neuromodulation to that of closed-loop neuromodulation paradigms. For each, we compared three stimulation frequencies on a within-subject basis (5, 20, 100 Hz). For closed-loop stimulation, we detected seizures in real time based on the EEG power within the characteristic frequency band of spike-and-wave discharges (SWDs). We quantified the number and duration of each SWD during each 2 h-observation period. Following completion of the experiment, virus expression and fibre-optic placement was confirmed. We found that single-unit activity within the DLSC decreased seconds prior to SWD onset and increased during and after seizures. Nearly 40% of neurons displayed suppression of firing in response to the start of SWDs. Continuous optogenetic stimulation of the DLSC (at each of the three frequencies) resulted in a significant reduction of SWDs in males and was without effect in females. In contrast, closed-loop neuromodulation was effective in both females and males at all three frequencies. These data demonstrate that activity within the DLSC is suppressed prior to SWD onset, increases at SWD onset, and that excitatory optogenetic stimulation of the DLSC exerts anti-seizure effects against absence seizures. The striking difference between open- and closed-loop neuromodulation approaches underscores the importance of the stimulation paradigm in determining therapeutic effects.


Epilepsy, Absence , Rats , Male , Humans , Animals , Female , Epilepsy, Absence/genetics , Epilepsy, Absence/therapy , Superior Colliculi , Optogenetics/methods , Seizures/therapy , Electroencephalography , Disease Models, Animal
9.
Neuropharmacology ; 235: 109563, 2023 09 01.
Article En | MEDLINE | ID: mdl-37116610

Sensorimotor gating is the ability to suppress motor responses to irrelevant sensory inputs. This response is disrupted in a range of neuropsychiatric disorders. Prepulse inhibition (PPI) of the acoustic startle response (ASR) is a form of sensorimotor gating in which a low-intensity prepulse immediately precedes a startling stimulus, resulting in an attenuation of the startle response. PPI is conserved across species and the underlying circuitry mediating this effect has been widely studied in rodents. However, recent work from our laboratories has shown an unexpected divergence between the circuitry controlling PPI in rodents as compared to macaques. The nucleus accumbens, a component of the basal ganglia, has been identified as a key modulatory node for PPI in rodents. The role of the nucleus accumbens in modulating PPI in primates has yet to be investigated. We measured whole-body PPI of the ASR in six rhesus macaques following (1) pharmacological inhibition of the nucleus accumbens using the GABAA agonist muscimol, and (2) focal application of the dopamine D2/3 agonist quinpirole (at 3 doses). We found that quinpirole, but not muscimol, infused into the nucleus accumbens disrupts prepulse inhibition in monkeys. These results differ from those observed in rodents, where both muscimol and quinpirole disrupt prepulse inhibition.


Nucleus Accumbens , Prepulse Inhibition , Animals , Quinpirole/pharmacology , Reflex, Startle , Macaca mulatta , Muscimol/pharmacology , Dopamine Agonists/pharmacology , Acoustics , Acoustic Stimulation/methods
10.
J Neurosci ; 43(18): 3331-3338, 2023 05 03.
Article En | MEDLINE | ID: mdl-37012054

The bed nucleus of the stria terminalis (BNST) has been implicated in a variety of social behaviors, including aggression, maternal care, mating behavior, and social interaction. Limited evidence from rodent studies suggests that activation of the BNST results in a decrease in social interaction between unfamiliar animals. The role of the BNST in social interaction in primates remains wholly unexamined. Nonhuman primates provide a valuable model for studying social behavior because of both their rich social repertoire and neural substrates of behavior with high translational relevance to humans. To test the hypothesis that the primate BNST is a critical modulator of social behavior, we performed intracerebral microinfusions of the GABAA agonist muscimol to transiently inactivate the BNST in male macaque monkeys. We measured changes in social interaction with a familiar same-sex conspecific. Inactivation of the BNST resulted in significant increase in total social contact. This effect was associated with an increase in passive contact and a significant decrease in locomotion. Other nonsocial behaviors (sitting passively alone, self-directed behaviors, and manipulation) were not impacted by BNST inactivation. As part of the "extended amygdala," the BNST is highly interconnected with the basolateral (BLA) and central (CeA) nuclei of the amygdala, both of which also play critical roles in regulating social interaction. The precise pattern of behavioral changes we observed following inactivation of the BNST partially overlaps with our prior reports in the BLA and CeA. Together, these data demonstrate that the BNST is part of a network regulating social behavior in primates.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) has a well-established role in anxiety behaviors, but its role in social behavior is poorly understood. No prior studies have evaluated the impact of BNST manipulations on social behavior in primates. We found that transient pharmacological inactivation of the BNST increased social behavior in pairs of macaque monkeys. These data suggest the BNST contributes to the brain networks regulating sociability.


Septal Nuclei , Humans , Animals , Male , Macaca mulatta , Septal Nuclei/physiology , Social Behavior , Amygdala/physiology , Aggression
11.
Epilepsia Open ; 2023 Mar 10.
Article En | MEDLINE | ID: mdl-36896626

Growing concerns over rigor and reproducibility of preclinical studies, including consistency across laboratories and translation to clinical populations, have triggered efforts to harmonize methodologies. This includes the first set of preclinical common data elements (CDEs) for epilepsy research studies, as well as Case Report Forms (CRFs) for widespread use in epilepsy research. The General Pharmacology Working Group of the ILAE/AES Task Force (TASK3-WG1A) has continued in this effort by adapting and refining CDEs/CRFs to address specific study design areas as they relate to preclinical drug screening: general pharmacology, pharmacokinetics (PK) and pharmacodynamics (PD), and tolerability. This work has expanded general pharmacology studies to include dose records, PK/PD, tolerability, and elements of rigor and reproducibility. Tolerability testing CRFs included rotarod and Irwin/Functional Observation Battery (FOB) assays. The material provided in the form of CRFs can be delivered for widespread use within the epilepsy research community.

12.
Epilepsia ; 64(2): 524-535, 2023 02.
Article En | MEDLINE | ID: mdl-36448878

OBJECTIVE: Decades of studies have indicated that activation of the deep and intermediate layers of the superior colliculus can suppress seizures in a wide range of experimental models of epilepsy. However, prior studies have not examined efficacy against spontaneous limbic seizures. The present study aimed to address this gap through chronic optogenetic activation of the superior colliculus in the pilocarpine model of temporal lobe epilepsy. METHODS: Sprague Dawley rats underwent pilocarpine-induced status epilepticus and were maintained until the onset of spontaneous seizures. Virus coding for channelrhodopsin-2 was injected into the deep and intermediate layers of the superior colliculus, and animals were implanted with head-mounted light-emitting diodes at the same site. Rats were stimulated with either 5- or 100-Hz light delivery. Seizure number, seizure duration, 24-h seizure burden, and behavioral seizure severity were monitored. RESULTS: Both 5- and 100-Hz optogenetic stimulation of the deep and intermediate layers of the superior colliculus reduced daily seizure number and total seizure burden in all animals in the active vector group. Stimulation did not affect either seizure duration or behavioral seizure severity. Stimulation was without effect in opsin-negative control animals. SIGNIFICANCE: Activation of the deep and intermediate layers of the superior colliculus reduces both the number of seizures and total daily seizure burden in the pilocarpine model of temporal lobe epilepsy. These novel data demonstrating an effect against chronic experimental seizures complement a long history of studies documenting the antiseizure efficacy of superior colliculus activation in a range of acute seizure models.


Epilepsy, Temporal Lobe , Rats , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/therapy , Pilocarpine/toxicity , Superior Colliculi , Optogenetics , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/therapy , Disease Models, Animal
13.
Pharmacol Rep ; 75(1): 166-176, 2023 Feb.
Article En | MEDLINE | ID: mdl-36195689

BACKGROUND: Cannabidiol (CBD) has been of rapidly growing interest in the epilepsy research field due to its antiseizure properties in preclinical models and patients with pharmacoresistant epilepsy. However, little is known about CBD effects in genetic models of epilepsies. Here we assessed CBD dose-response effects in the Genetically Epilepsy Prone Rats (GEPR-3) strain, which exhibits two types of epileptic seizures, brainstem-dependent generalized tonic-clonic seizures and limbic seizures. METHODS: GEPR-3 s were submitted to the audiogenic seizure (AGS) protocol. Acute AGS are brainstem-dependent generalized tonic-clonic, while repeated AGS (or audiogenic kindling, AK), an epileptogenic process, leads to increased AGS severity and limbic seizure expression. Therefore, two different dose-response studies were performed, one for generalized tonic-clonic seizures and the other for limbic seizures. CBD time-course effects were assessed 2, 4, and 6 h after drug injection. GEPR-3 s were submitted to within-subject tests, receiving intraperitoneal injections of CBD (1, 10, 50, 100 mg/kg/ml) and vehicle. RESULTS: CBD dose-dependently attenuated generalized tonic-clonic seizures in GEPR-3 s; CBD 50 and 100 mg/kg reduced brainstem-dependent seizure severity and duration. In fully kindled GEPR-3 s, CBD 10 mg/kg reduced limbic seizure severity and suppressed limbic seizure expression in 75% of animals. CONCLUSIONS: CBD was effective against brainstem and limbic seizures in the GEPR-3 s. These results support the use of CBD treatment for epilepsies by adding new information about the pharmacological efficacy of CBD in suppressing inherited seizure susceptibility in the GEPR-3 s.


Cannabidiol , Epilepsy, Reflex , Kindling, Neurologic , Rats , Animals , Cannabidiol/pharmacology , Seizures/drug therapy , Kindling, Neurologic/physiology , Epilepsy, Reflex/drug therapy , Epilepsy, Reflex/genetics , Brain Stem , Niacinamide/pharmacology , Acoustic Stimulation , Disease Models, Animal
14.
Pharmacol Rep ; 74(5): 1092-1098, 2022 Oct.
Article En | MEDLINE | ID: mdl-36220975

BACKGROUND: The treatment of epilepsy during early life poses unique challenges-first-line therapies leave many individuals with poorly controlled seizures. In response to the pharmaco-resistance of current first-line anti-seizure drugs (ASDs) during early life, new therapies have emerged. One such therapy is cannabidiol (CBD). While well studied in adult models of epilepsy, it is poorly studied in immature animals. Here we assessed the efficacy of CBD in immature rodent models of the epilepsies. METHODS: Pups were pre-treated with CBD (1, 10, 50, 100, 200 mg/kg) and assessed for anticonvulsant efficacy using two well-established anti-seizure screening models: the pentylenetetrazole (PTZ) and maximal electroshock (MES) models. We assessed drug efficacy in postnatal day (P)7 and P21 rats. RESULTS: In the PTZ model, CBD delayed seizure onset in adolescent but not neonatal rats. By contrast, higher doses of CBD reduced seizure duration in both neonatal and adolescent rats in the MES model. The effects of CBD in both models were modest but consistent. CONCLUSION: Efficacy of CBD increased in older as compared to younger animals, producing an age-, model-, and dose-dependent suppression of seizures. These data suggest neonatal seizures (modeled by P7 treatment) may be less responsive to CBD. They also suggest preferential efficacy against tonic seizures as compared to partial motor seizures.


Cannabidiol , Epilepsy , Rats , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Pentylenetetrazole , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Disease Models, Animal , Epilepsy/drug therapy
15.
Epilepsy Curr ; 22(5): 303-308, 2022.
Article En | MEDLINE | ID: mdl-36285203

The fundamental commonality across pharmacotherapies for the epilepsies is the modulation of neuronal excitability. This poses a clear challenge-patterned neuronal excitation is essential to normal function, thus disrupting this activity leads to side effects. Moreover, the efficacy of current pharmacotherapy remains incomplete despite decades of drug development. Approaches that allow for the selective targeting of critical populations of cells and particular pathways in the brain have the potential to both avoid side effects and improve efficacy. Chemogenetic methods, which combine the selective expression of designer receptors with designer drugs, have rapidly grown in use in the neurosciences, including in epilepsy. This review will briefly highlight the history of chemogenetics, their applications to date in epilepsy, and the potential (and potential hurdles to overcome) for future translation.

16.
Biology (Basel) ; 11(7)2022 Jul 08.
Article En | MEDLINE | ID: mdl-36101412

Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In this study we compare the circadian rhythms and sleep patterns in the high-frequency head impact (HFHI) and controlled cortical impact (CCI) mouse models of TBI. These mouse models have different injury mechanisms key differences of pathology in brain regions controlling circadian rhythms and EEG wave generation. We found that both HFHI and CCI caused dysregulation in the diurnal expression of core circadian genes (Bmal1, Clock, Per1,2, Cry1,2) at 24 h post-TBI. CCI mice had reduced locomotor activity on running wheels in the first 7 d post-TBI; however, both CCI and HFHI mice were able to maintain circadian behavior cycles even in the absence of light cues. We used implantable EEG to measure sleep cycles and brain activity and found that there were no differences in the time spent awake, in NREM or REM sleep in either TBI model. However, in the sleep states, CCI mice have reduced delta power in NREM sleep and reduced theta power in REM sleep at 7 d post-TBI. Our data reveal that different types of brain trauma can result in distinct patterns of circadian and sleep disruptions and can be used to better understand the etiology of sleep disorders after TBI.

17.
Prog Neurobiol ; 214: 102286, 2022 07.
Article En | MEDLINE | ID: mdl-35537572

There is a large unmet need for improved treatment for temporal lobe epilepsy (TLE); circuit-specific manipulation that disrupts the initiation and propagation of seizures is promising in this regard. The midline thalamus, including the mediodorsal nucleus (MD) is a critical distributor of seizure activity, but its afferent and efferent pathways that mediate seizure activity are unknown. Here, we used chemogenetics to silence input and output projections of the MD to discrete regions of the frontal cortex in the kindling model of TLE in rats. Chemogenetic inhibition of the projection from the amygdala to the MD abolished seizures, an effect that was replicated using optogenetic inhibition. Chemogenetic inhibition of projections from the MD to the prelimbic cortex likewise abolished seizures. By contrast, inhibition of projections from the MD to other frontal regions produced partial (orbitofrontal cortex, infralimbic cortex) or no (cingulate, insular cortex) attenuation of behavioral or electrographic seizure activity. These results highlight the particular importance of projections from MD to prelimbic cortex in the propagation of amygdala-kindled seizures.


Kindling, Neurologic , Thalamus , Amygdala/physiology , Animals , Frontal Lobe/physiology , Humans , Kindling, Neurologic/physiology , Rats , Seizures , Thalamus/physiology
18.
Behav Neurosci ; 136(2): 159-171, 2022 Apr.
Article En | MEDLINE | ID: mdl-35025530

Goal-directed behavior and habit are parallel and, at times, competing processes. The relative balance of flexible, goal-directed responding as compared to inflexible habitual responding is highly dependent on experience (e.g., training history in a task) and conditions under which the behavior was formed. Reinforcer devaluation tasks have been used widely across species to study the neurobiology of goal-directed behavior. In rodents, under some conditions, extended training in reinforcer devaluation tasks transforms goal-directed responses into habits, rendering the animals insensitive to devaluation. In nonhuman primates, no studies have previously evaluated the impact of extended training. Here we trained four macaques in a variant of the standard reinforcer devaluation task (Málková et al., 1997), in which we presented objects with either a standard number of exposures (i.e., up to 55) or with a high number of exposures (i.e., up to 454). We tested for goal-directed behavior at three time points during the course of this extended training with different combinations of high- and low-repetition objects and stratified results based on whether the preferred or nonpreferred reinforcer was devalued. We found robust devaluation effects across all three cycles of training; however, the magnitude of the effect was modulated by reinforcer preference and by the relative training history of the objects. These data argue against habit formation after overtraining in the reinforcer devaluation task in macaques, a finding that is consistent with reports in humans and with tasks in rodents that employ multiple stimuli, reinforcers, and instrumental actions. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Conditioning, Operant , Reinforcement, Psychology , Animals , Conditioning, Operant/physiology , Extinction, Psychological/physiology , Habits , Macaca
19.
Epilepsy Curr ; 21(5): 379-381, 2021 Oct.
Article En | MEDLINE | ID: mdl-34924842
20.
Epilepsy Res ; 176: 106693, 2021 10.
Article En | MEDLINE | ID: mdl-34225231

The WAG/Rij strain of rats is commonly used as a preclinical model of genetic absence epilepsy. While widely utilized, the developmental trajectory of absence seizure expression has been only partially described. Moreover, sex differences in this strain have been under-explored. Here, we longitudinally monitored male and female WAG/Rij rats to quantify cortical spike-and-wave discharges (SWDs) monthly, from 4 to 10 months of age. In both male and female WAG/Rij rats, absence seizure susceptibility increased with age. In contrast to previous reports, we found a robust and consistent increase in absence epilepsy susceptibility in male WAG/Rij rats in comparison to females across months. The increased absence seizure susceptibility was characterized by increased number and duration of SWDs, and consequently increased total SWDs duration. These findings highlight a previously un-recognized sex difference in a model of absence epilepsy and narrow the knowledge gap of age-dependent expression of SWDs in the WAG/Rij strain.


Epilepsy, Absence , Animals , Disease Models, Animal , Electroencephalography , Epilepsy, Absence/genetics , Female , Male , Rats , Rats, Wistar , Seizures/genetics
...